
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Analyzing Time Efficiency and Computational

Complexity of CFOP Algorithm in Rubik's Cube

Solving

Ahmad Wicaksono - 13523121

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

ahmadwicaksono031004@gmail.com, 13523121@std.stei.itb.ac.id

Abstract— CFOP algorithm (Cross, F2L, OLL, PLL) remains

one of the most widely utilized methods for solving the Rubik's

Cube due to its balance between simplicity and efficiency. This

study investigates the computational complexity and time

efficiency of the CFOP algorithm, providing insights into its

practical applications and limitations. A case study of Max Park, a

world-renowned Rubik's Cube speed solver, exemplifies the

algorithm's effectiveness. On June 11, 2023, Max Park set a world

record by solving a standard 3x3 Rubik's Cube in an astonishing

3.13 seconds, showcasing the potential of CFOP for competitive

solving. By breaking down the algorithm's steps and analyzing its

performance under theoretical and real-world conditions, this

research aims to bridge the gap between algorithmic complexity

and practical efficiency. The findings offer valuable implications

for both casual enthusiasts and developers of Rubik's Cube-solving

algorithms.

Keywords—Rubik’s Cube, CFOP, Algorithm, Efficiency.

I. INTRODUCTION

The Rubik's Cube, first introduced by Ernő Rubik in 1974,

represents a compelling intersection of mathematics, spatial

reasoning, and algorithmic design. With over

43,252,003,274,489,856,000 possible configurations in a

standard 3×3×3 cube, solving this puzzle efficiently has long

captured the attention of mathematicians, computer scientists,

and puzzle enthusiasts. Among the many solving techniques

developed. CFOP (Cross, F2L, OLL, PLL) algorithm is widely

regarded as the most influential and systematically efficient

method, particularly in the domain of competitive speed cubing.

Its structured, stepwise approach combines algorithmic

precision with human intuition, making it a subject of interest

for both theoretical exploration and practical application.

Figure 1.1 Rubik’s Cube

(https://www.artofplay.com/products/rubiks-cube)

CFOP algorithm decomposes the problem of solving the

Rubik's Cube into four sequential phases: constructing the cross

(Cross), solving the first two layers simultaneously (F2L),

orienting the last layer (OLL), and permuting the last layer

(PLL). Each phase incorporates distinct algorithmic elements,

often involving heuristic optimizations to reduce the total

number of moves. Despite its wide adoption, the computational

properties of CFOP remain underexplored, particularly in terms

of its time efficiency and computational complexity across

varying scenarios. A rigorous examination of these factors is

essential for understanding their performance limits and

identifying opportunities for optimization.

This research investigates the time efficiency and

computational complexity of the CFOP algorithm, with a

particular focus on its scalability and practical implications. The

complexity of the algorithm arises from several factors,

including the combinatorial nature of the cube’s states, the

branching factor in decision-making during the F2L phase, and

the varying lengths and execution times of algorithms in the

OLL and PLL phases. While CFOP is designed for efficiency in

practice, theoretical analysis can shed light on its average-case

and worst-case performance, as well as its dependence on

human proficiency and algorithm memorization.

In summary, this research seeks to bridge the gap between

practical solving strategies and theoretical computational

analysis by systematically examining the CFOP algorithm.

Through this investigation, the Rubik's Cube transcends its role

as a recreational puzzle, serving as a model for exploring the

interplay between algorithmic design, human intuition, and

computational efficiency.

II. THEORETICAL BASIS

A. Time Complexity
 Time complexity refers to a measure the amount of time an

algorithm takes to execute. It is typically assessed by counting

the number of basic operations an algorithm performs.

Consequently, the time required by an algorithm is considered

mailto:ahmadwicaksono031004@gmail.com
mailto:13523121@std.stei.itb.ac.id
https://www.artofplay.com/products/rubiks-cube

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

proportional to the number of such operations, linked by a

constant factor.

 Since the execution time of an algorithm can vary for

different inputs of the same size, the worst-case time complexity

is often used. This represents the maximum time the algorithm

might take for any input of a given size. Alternatively, the

average-case time complexity, though less frequently analyzed,

describes the average runtime over all possible inputs of a

specific size. Both measures express time complexity as a

function of the input size.

 Exact computation of time complexity functions is often

impractical, so the focus is usually on the algorithm’s behavior

as the input size becomes large—its asymptotic behavior. Time

complexity is commonly represented using big 𝑂 notation, such

as 𝑂(𝑛), 𝑂(𝑛𝑙𝑜𝑔𝑛), 𝑂(𝑛2), or 𝑂(2𝑛), where 𝑛 represents the

size of the input, often in bits.

Figure 2.1. Time Complexity Chart

(https://www.freecodecamp.org/news/big-o-cheat-sheet-time-

complexity-chart/)

 Algorithms are categorized based on the function in the big 𝑂

notation. For instance, an algorithm with 𝑂(𝑛) time complexity

operates in linear time, while one with 𝑂(𝑛𝛼), where 𝛼 > 0

operates in polynomial time.

B. Rubik’s Cube
 Rubik’s Cube invented in 1974 by Hungarian architect and

professor named Ernő Rubik. It is created as a teaching tool to

help students understand three-dimensional geometry, it quickly

became a global phenomenon. The standard 3x3 Rubik’s Cube

consists of 26 smaller cubies arranged around a fixed core, with

each of its six faces capable of independent rotation. The

objective is to return the cube to its solved state, where each face

displays a uniform color, after scrambling its pieces through a

series of twists.

 Beyond its appeal as a toy, the Rubik’s Cube has deep roots

in mathematics, particularly in group theory and combinatorics.

The complexity of Rubik’s cube has inspired the development

of various solving methods, such as CFOP (Cross, F2L, OLL,

PLL), Roux, and Petrus. Moreover, the Rubik’s Cube has

become a symbol of problem-solving and intellectual curiosity,

influencing fields as diverse as artificial intelligence,

optimization, and education.

 As a cultural and mathematical artifact, the Rubik’s Cube

continues to inspire innovation. Speedcubing competitions have

emerged, where participants compete to solve the cube in the

shortest time, pushing human reflexes and algorithmic

understanding to new limits. Meanwhile, researchers explore its

theoretical implications, such as “God’s Number” the

maximum number of moves required to solve any scrambled

cube.

 To understand the mechanics of the Rubik's Cube, it is

essential to familiarize oneself with the notation used to describe

its moves. Each move corresponds to a rotation of one of the

cube’s six faces, and this notation provides a standardized

language for solvers and algorithms alike. By breaking down

these movements, one can analyze how the cube's pieces are

repositioned and manipulated during the solving process. Below

is an explanation of the standard moves, where each letter

represents a specific face of the cube and the direction it is

rotated.

• R: Rotate right-face clockwise.

• U: Rotate upper face clockwise.

• F: Rotate the front face clockwise.

• D: Rotate down face clockwise.

• B: Rotate the back face clockwise.

• L: Rotate left face clockwise.

 Each of these moves can also be reversed into a

counterclockwise move such as R′, U′, F′, D′, B′, L′, where the

prime symbol (') indicates a counterclockwise rotation.

 In addition to face rotations, whole-cube rotations are denoted

by:

• x: Rotate the entire cube as if performing R while

keeping the center fixed.

• y: Rotate the entire cube as if performing U.

• z: Rotate the entire cube as if performing F.

 Middle layer moves involve rotating the internal slices of

the cube:

• M: Rotate the middle slice parallel to the L-R axis.

• E: Rotate the middle slice parallel to the U-D axis.

• S: Rotate the middle slice parallel to the F-B axis.

`

C. CFOP Method
 The CFOP method, also known as the Fridrich method, is

one of the most used methods in speed solving a 3×3×3 Rubik’s

Cube. It is one of the fastest methods with the other most notable

ones being Roux and ZZ. This method was first developed in the

early 1980s, combining innovations by a number of speed-

cubers. Jessica Fridrich, a Czech speed-cubers and the namesake

of the method, is generally credited for popularizing it by

publishing it online in 1997. Here are the 4 methods of CFOP:

1. Cross
 This first stage of solving involves solving the four edge

pieces around one center piece, matching the colors of that

center and each of the centers of the adjacent sides, forming the

eponymous cross shape on the first layer. Most beginner

methods solve the cross by first putting the white edge pieces

around the yellow center on the top, then matching them with

the same colored center, and finally moving them down to match

them with the white center. Most CFOP tutorials instead

recommend solving the cross on the bottom side to avoid cube

rotations and to get an overall better view of the important pieces

needed for the next step (F2L).

https://www.freecodecamp.org/news/big-o-cheat-sheet-time-complexity-chart/
https://www.freecodecamp.org/news/big-o-cheat-sheet-time-complexity-chart/

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Figure 2.2. How Cross Solved in 3x3 Rubik’s Cube

(https://en.wikipedia.org/wiki/Rubik%27s_Cube)

 This cross is usually solved intuitively, although some

techniques, such as replacement, and edge orientation, are used.

The white cross is most used for demonstration and by beginner

and intermediate speedsolvers, though more advanced

speedcubers can use any of the six colors to form the cross, a

practice known as color neutrality. The cross can always be

solved in 8 moves or fewer.

2. First Two Layer (F2L)
 While the beginner methods continues by solving the four

corners of the first layer and then matching the vertical edges to

the corners to solve the second layer, the CFOP method solves

each corner along with its vertical edge at the same time. There

are 42 unique cases for the permutations of a corner and its

matching edge on the cube (one of which corresponds to the

solved pair), and the most efficient algorithm to solve any other

case without "breaking" any already-solved pair is known and

can be memorized.

Figure 2.3. How F2L Solved in 3x3 Rubik’s Cube

(https://en.wikipedia.org/wiki/Rubik%27s_Cube)

3. Orient Last Layer (OLL)
 This stage involves manipulating the top layer (yellow, if the

cross is solved on white) so that all the pieces have the correct

color on top, while largely ignoring the sides of these pieces.

Doing this in one step is called “Full OLL”. There are 58

possible combinations of piece orientations, so once again

ignoring the solved case, this stage involves learning a total of

57 algorithms.

Figure 2.4. How PPL Solved in 3x3 Rubik’s Cube

(https://en.wikipedia.org/wiki/Rubik%27s_Cube)

4. PLL
 The final stage involves moving the pieces of the top layer

while preserving their orientation. There are a total of 21

algorithms for this stage. They are distinguished by letter names,

often based on what they look like with arrows representing

what pieces are swapped around such as, A-perm, F-perm, T-

perm etc. Two-look PLL solves the corners first, followed by

the edges, and requires learning just six algorithms of the full

PLL set. The most common subset uses the A-perm and E-perm

to solve corners (as these algorithms only permute the corners),

then the U-perm (in clockwise and counter-clockwise variants),

H-perm and Z-perm for edges. However, as corners are solved

first in two-look, the relative position of edges is unimportant,

and so algorithms that permute both corners and edges can be

used to solve corners. The J, T, F, and R-perms are all valid

substitutes for the A-perm, while the N, V and Y-perm can do

the same job as the E-perm. Even fewer algorithms can be used

to solve PLL.

Figure 2.5. PLL Cases in 3x3 Rubik’s Cube

(https://en.wikipedia.org/wiki/Rubik%27s_Cube)

III. ALGORITHM IMPLEMENTATION

 In this research, various algorithms for solving and analyzing

Rubik's Cube configurations were implemented using the

“PyCubing” library, which provides efficient tools for working

with Rubik's Cube puzzles.

A. Cross Algorithm
 The computational complexity of the cross algorithm is

constrained by the finite number of states in a Rubik's Cube, its

efficiency depends on the initial configuration. In the worst case,

aligning each edge may require several rotations making the

time complexity proportional to the number of misalignments.

The current implementation uses efficient processes to minimize

unnecessary moves. This function provides a solid foundation

https://en.wikipedia.org/wiki/Rubik%27s_Cube
https://en.wikipedia.org/wiki/Rubik%27s_Cube
https://en.wikipedia.org/wiki/Rubik%27s_Cube
https://en.wikipedia.org/wiki/Rubik%27s_Cube

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

for Rubik's Cube-solving research particularly in combinatorial

optimization and process efficiency for adaptation to other

solving frameworks.

Figure 3.1. Cross Algorithm

(Writer’s Archive)

 “solve_white_cross” function is designed to solve the white

cross on a 3x3 Rubik's Cube. This algorithm systematically

aligns all white edges on the top face while ensuring these edges

match their adjacent center colors. To achieve this, the function

operates in two phases: first, gathering all white edges to the top

face, and second, aligning and inserting them into their correct

positions. In the initial phase, the algorithm iteratively checks

the location of each white edge, employing predefined moves,

such as F U' R, to reposition misaligned pieces. It handles

complex scenarios, including edges on the sides or bottom face,

using conditional logic and predefined face relationships. Once

all edges are on the top face, this algorithm transits to the second

phase, where it aligns the edges with their respective centers and

inserts them into the solved state using efficient rotations.

B. Front Two Layers (F2L) Algorithm

Figure 3.2. First Layer Algorithm (F2L)

(Writer’s Archive)

 The provided functions such as solve_first_layer_corners

and solve_second_layer_edges address two critical steps in

solving a 3x3 Rubik's Cube by completing the first layer's

corners and solving the second layer's edges. Both functions

employ modular subroutines for checking the state of specific

pieces, ensuring correct placement and orientation.

 The solve_first_layer_corners function focuses on permuting

and orienting white corners by identifying their positions and

applying move sequences like "sexy moves" to either reposition

or insert them. The solve_second_layer_edges function uses

systematic checks to locate unsolved edges and applies efficient

insertion algorithms to align and place them correctly.

 The complexity of these functions arises from iterating over

possible piece states with a worst-case scenario of handling

multiple misaligned corners or edges. Each piece requires

conditional checks and potentially multiple moves to reach the

desired position resulting in an overall time complexity

proportional to the number of misaligned pieces. These

functions provide a foundational approach to solving the cube

and offer opportunities for research into process-based

optimization.

Figure 3.3. Second Layer Algorithm (F2L)

(Pycubing)

C. Orient Last Layer (OLL) Algorithm
 The solve_oll_edges and solve_oll_corners functions address

the Orientation of the Last Layer (OLL) step in solving a 3x3

Rubik's Cube by orienting the edges and corners of the top layer

to align with the yellow face. The solve_oll_edges function

handles three main patterns such as dot, line, and L-shape using

specific algorithms to orient edges. Similarly, solve_oll_corners

iteratively adjusts corner orientation using "sexy moves" and

bottom-layer rotations with a bounded number of iterations due

to the finite corner configuration and also resulting in a time

complexity of 𝑂(1).
 Both functions are deterministic to ensure efficiency. While

these implementations are optimized for manual solving, their

performance could be further enhanced by integrating pattern

recognition or advanced algorithms, making them suitable for

exploring process efficiency and OLL algorithmic

improvements in Rubik's Cube solving.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Figure 3.2. OLL Algorithm (solve_oll_corners)

(Writer’s Archive)

D. Permutation Last Layer (PLL) Algorithm

Figure 3.2. PLL Algorithm (solve_pll_edges)

(Writer’s Archive)

 The solve_pll_corners and solve_pll_edges functions address

the Permutation of the Last Layer (PLL) step. The

solve_pll_corners function utilizes the T-permutation algorithm

to resolve diagonal or adjacent swaps in 𝑂(1) moves due to the

finite state space of corner permutations. Similarly,

solve_pll_edges applies predefined edge-swap algorithms and

checks for parity issues, iterating at most twice, with each

iteration bounded by the limited edge configurations, leading to

a time complexity of 𝑂(1).
 Both functions rely on efficient matrix-based checks and

heuristic-driven swaps, ensuring deterministic and optimized

performance for manual solving scenarios. However, the current

design does not dynamically handle parity corrections,

potentially requiring external intervention for some

configurations, and could benefit from integrating more

advanced algorithms or precomputed lookup tables for further

optimization.

E. Edge Cases Handling
 In 𝑁𝑥𝑁 Rubik’s Cubes, solving edge cases significantly

impacts computational complexity, particularly during steps that

involve pairing and positioning edge pieces. Unlike the standard

3𝑥3 cube, an 𝑁𝑥𝑁 cube's edge consists of multiple smaller edge

pieces (specifically 𝑛 − 2 pieces per edge). The requirement to

correctly pair these smaller pieces introduces additional

complexity as the cube's size increases.

 The complexity arises from the iterative pairing process. For

an 𝑁𝑥𝑁 cube, there are 12(𝑛 − 2) edge pieces, and solving

these involves scanning, identifying, and aligning misplaced

pieces. Each edge pairing step may involve multiple rotations,

or slice moves to position edge fragments adjacent to their

corresponding pieces. Since edge-solving generally requires

evaluating the positions of all edge pieces, the algorithm

operates over a search space proportional to 𝑛2, resulting in a

complexity of 𝑂(𝑛2). This quadratic relationship is further

compounded by potential edge parity issues unique to even-

dimension cubes like 4x4 and 6x6, requiring additional

algorithms to resolve misalignments.

 Furthermore, as 𝑛 increases, the higher number of

intermediate states and possible configurations for edge piece

placement exacerbates the computational effort. This

complexity highlights the need for efficient pairing strategies to

mitigate the performance impact in larger 𝑁𝑥𝑁 cubes.

IV. ANALYSIS

 The time efficiency and computational complexity of the

Rubik’s Cube solver code depend on several factors, primarily

the cube's size (𝑁𝑥𝑁) and the specific algorithms used for each

solving phase. In the case of a general 𝑁𝑥𝑁 solver (whether for

3x3, 4x4, or larger cubes), each algorithm must account for the

increased number of pieces and potential misalignments as the

cube size grows. For example, the "first layer corners" solving

step involves multiple rotations to align corner pieces and

position them correctly. As the cube's size increases, these

rotations multiply, leading to a quadratic complexity of 𝑶(𝒏𝟐).

The "second layer edges" algorithm faces a similar challenge,

where the complexity arises from the need to evaluate edge

placements and swap or rotate edge pieces until they are

correctly aligned.

 For algorithms like "OLL (Orientation of the Last Layer)"

and "PLL (Permutation of the Last Layer)", the time complexity

is highly dependent on the number of pieces to be oriented or

permuted. For larger cubes, more moves are required to

reposition each edge or corner, and algorithms that were

originally linear for the 3𝑥3 may become more intricate as the

cube size increases. Given that the edge pieces in an 𝑁𝑥𝑁 cube

are represented by multiple smaller elements which must be

correctly aligned or swapped, the overall complexity of solving

the entire cube can grow nonlinearly with certain steps requiring

handling edge parity and additional algorithms for fixing

impossible configurations.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Figure 4.1. Example of Rubiks 3x3 Solved Moves

(Writer’s Archive)

The solving counts for the 2𝑥2 and 3𝑥3 Rubik’s cubes can be

considered 𝑂(1) complexity, as these cubes require a fixed

number of steps that do not scale with their size. The 2𝑥2 cube,

being a simplified version without edges, inherently has fewer

permutations and can be solved in a consistent number of moves

(95-100 Moves on average). Similarly, the 3𝑥3 cube can be

efficiently solved using standard algorithms like CFOP within a

finite move count (135-150 Moves on average). In contrast,

higher-order cubes like the 4𝑥4 and 5𝑥5 introduce additional

challenges, such as parity errors and edge pairing which makes

their solving process scale more dramatically, different from the

constant-time 𝑂(1) complexity seen in the 2x2 and 3x3 cubes.

Here is the data of the cube solved in a random scrambled:

Figure 4.2. Data Counting Solving Moves on Rubik’s Cube

𝑁𝑥𝑁

(Writer’s Archive)

As the size of the Rubik's Cube increases from 6𝑥6 to 10𝑥10,

the number of moves required to solve it grows significantly,

following an increasing complexity pattern. This increase in

moves reflects the added complexity of solving cubes with more

pieces, additional edge and center alignment challenges, and the

need to handle more complex parity errors. The growth in move

count illustrates the O(n²) time complexity, where n represents

the number of pieces on one side. This scaling shows how the

larger state space of each cube size leads to more computational

effort, as each new layer adds more pieces to manage, making

larger cubes progressively more difficult to solve. Here is the

given count solved moved in 6𝑥6 to 10𝑥10:

• 𝟔𝒙𝟔 Rubik’s cube solved within 1525 moves

• 𝟕𝒙𝟕 Rubik’s cube solved within 1998 moves

• 𝟖𝒙𝟖 Rubik’s cube solved within 2847 moves

• 𝟗𝒙𝟗 Rubik’s cube solved within 3376 moves

• 𝟏𝟎𝒙𝟏𝟎 Rubik’s cube solved within 4138 moves

The time complexity of solving Rubik's Cube puzzles

increases with the size of the cube, particularly from the 2𝑥2 to

5𝑥5 cubes, and scales almost quadratically with larger cubes

like the 6𝑥6, 7𝑥7, and beyond. For smaller cubes, such as the

2𝑥2 or 3𝑥3, the solving process typically involves fewer moves,

and the complexity grows linearly as more pieces are added.

However, when moving to larger cubes, the problem becomes

significantly more complex. For instance, a 6𝑥6 cube requires

around 1525 moves to solve, a 7𝑥7 requires 1998 moves, and

an 8𝑥8 requires 2847 moves. This growth is due to the

increased number of pieces that need to be permuted and

aligned, along with the introduction of additional complexities

like center piece solving and edge pairing, which are not present

in smaller cubes.

In larger cubes such as 9𝑥9 and 10𝑥10, the move count

continues to increase, reaching 3376 and 4138 moves,

respectively. This escalating number of moves results from

several factors, such as the greater number of individual pieces

(edges and corners) that must be correctly positioned and

aligned. Additionally, larger cubes often introduce special parity

issues that require unique algorithms to resolve, further

increasing the number of necessary moves. For example, while

a 3𝑥3 cube can typically be solved in fewer moves, solving a

5𝑥5 cube involves extra steps like solving the centers and

pairing the edges, both of which increase complexity.

The relationship between cube size and solving moves

demonstrates an approximately quadratic growth pattern,

aligning with the time complexity of 𝑂(𝑛2) where 𝑛 is the

dimension of the cube. The number of moves required grows in

proportion to the square of the cube size, reflecting the increase

in layers, pieces, and special cases that emerge as the cube

dimensions grow. This trend suggests that the time complexity

for larger cubes increases substantially as the solver must

account for the additional layers, pieces, and complexities such

as parity errors. While 𝑂(𝑛2) is a suitable classification for

complexity to reach the solved state.

V. CONCLUSION

 In conclusion, the time efficiency and computational

complexity of solving Rubik's Cubes can be analyzed with

respect to the increasing size of the cube. For smaller cubes, such

as the 2𝑥2 and 3𝑥3, the complexity is manageable, and human

solvers can efficiently use methods like CFOP (Fridrich

Method) with a time complexity that is generally considered

𝑂(𝑛^2). Ay the size of the cube increases, the number of pieces

and configurations increases exponentially which increases the

complexity and the number of moves required to solve the cube.

For cubes larger than 5𝑥5, the 𝑶(𝒏𝟐) complexity becomes more

evident as the solver needs to handle additional pieces, manage

edge pairing and address potential parity errors, which

significantly increases the move count.

The 𝑶(𝒏𝟐) complexity is primarily influenced by the need to

solve multiple layers and align edges for each face of the cube,

and this complexity grows as the cube’s size increases. For

instance, solving a 6𝑥6 cube can require upwards of 1500

moves, with the move count increasing further for larger cubes.

While CFOP remains an efficient method for human solvers, it

becomes less practical for larger cubes where more advanced

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

strategies are necessary. In the case of cubes larger than 5𝑥5, the

solver's time efficiency is heavily influenced by how well they

can adapt to the increasing complexity, and the 𝑶(𝒏𝟐) growth

in required moves becomes increasingly noticeable as the cube

size grows. While CFOP is optimal for 2𝑥2 and 3𝑥3 cubes, it

requires modifications and greater expertise for larger cubes,

where time efficiency becomes more dependent on solving

techniques suited to handling the increased number of

configurations.

VI. ACKNOWLEDGMENT

The writer would like to express heartfelt gratitude to God for

His continuous blessings, wisdom, and guidance throughout this

academic journey. Without His divine assistance, the

completion of this research paper would not have been possible.

The writer would also like to appreciate the Discrete

Mathematic lecturers, Ir. Rila Mandala, M.Eng., Ph.D., and Dr.

Ir. Rinaldi Munir, M.T., for dedication to teaching. Their

expertise, patient guidance, and willingness to share knowledge

have helped in shaping the writer's understanding of the subject.

The writer would like to express gratitude to family and

friends who have been constantly supporting. Their love and

support have made the completion of this research paper

possible.

REFERENCES

[1] "PyCubing." [Online]. Available:

https://pypi.org/project/pycubing/. [Accessed: January 8,

2025]

[2] "Rubik's Cube PLL Cases." [Online]. Available:

https://www.sporcle.com/games/npcds1/rubiks-cube-pll-

cases. [Accessed: January 8, 2025].

[3] "Rubik's Cube." [Online]. Available:

https://www.artofplay.com/products/rubiks-cube.

[Accessed: January 8, 2025].

[4] "Big O Cheat Sheet: Time Complexity Chart." [Online].

Available: https://www.freecodecamp.org/news/big-o-

cheat-sheet-time-complexity-chart/. [Accessed: January 8,

2025].

[5] "Rubik's Cube." [Online]. Available:

https://en.wikipedia.org/wiki/Rubik%27s_Cube.

[Accessed: January 8, 2025].

[6] "Rubik's Cube Scrambler." [Online]. Available:

https://ruwix.com/puzzle-scramble-generators/rubiks-

cube-scrambler/. [Accessed: January 8, 2025].

[7] "Fridrich Method for Solving the Rubik's Cube." [Online].

Available: http://www.ws.binghamton.edu/fridrich/.

[Accessed: January 8, 2025].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 2 Januari 2025

Ahmad Wicaksono/13523121

https://pypi.org/project/pycubing/
https://www.sporcle.com/games/npcds1/rubiks-cube-pll-cases
https://www.sporcle.com/games/npcds1/rubiks-cube-pll-cases
https://www.artofplay.com/products/rubiks-cube
https://www.freecodecamp.org/news/big-o-cheat-sheet-time-complexity-chart/
https://www.freecodecamp.org/news/big-o-cheat-sheet-time-complexity-chart/
https://en.wikipedia.org/wiki/Rubik%27s_Cube
https://ruwix.com/puzzle-scramble-generators/rubiks-cube-scrambler/
https://ruwix.com/puzzle-scramble-generators/rubiks-cube-scrambler/
http://www.ws.binghamton.edu/fridrich/

