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Abstract— CFOP algorithm (Cross, F2L, OLL, PLL) remains 

one of the most widely utilized methods for solving the Rubik's 

Cube due to its balance between simplicity and efficiency. This 

study investigates the computational complexity and time 

efficiency of the CFOP algorithm, providing insights into its 

practical applications and limitations. A case study of Max Park, a 

world-renowned Rubik's Cube speed solver, exemplifies the 

algorithm's effectiveness. On June 11, 2023, Max Park set a world 

record by solving a standard 3x3 Rubik's Cube in an astonishing 

3.13 seconds, showcasing the potential of CFOP for competitive 

solving. By breaking down the algorithm's steps and analyzing its 

performance under theoretical and real-world conditions, this 

research aims to bridge the gap between algorithmic complexity 

and practical efficiency. The findings offer valuable implications 

for both casual enthusiasts and developers of Rubik's Cube-solving 

algorithms. 
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I.   INTRODUCTION 

The Rubik's Cube, first introduced by Ernő Rubik in 1974, 

represents a compelling intersection of mathematics, spatial 

reasoning, and algorithmic design. With over 

43,252,003,274,489,856,000 possible configurations in a 

standard 3×3×3 cube, solving this puzzle efficiently has long 

captured the attention of mathematicians, computer scientists, 

and puzzle enthusiasts. Among the many solving techniques 

developed. CFOP (Cross, F2L, OLL, PLL) algorithm is widely 

regarded as the most influential and systematically efficient 

method, particularly in the domain of competitive speed cubing. 

Its structured, stepwise approach combines algorithmic 

precision with human intuition, making it a subject of interest 

for both theoretical exploration and practical application. 

 

Figure 1.1 Rubik’s Cube 

(https://www.artofplay.com/products/rubiks-cube) 

 

CFOP algorithm decomposes the problem of solving the 

Rubik's Cube into four sequential phases: constructing the cross 

(Cross), solving the first two layers simultaneously (F2L), 

orienting the last layer (OLL), and permuting the last layer 

(PLL). Each phase incorporates distinct algorithmic elements, 

often involving heuristic optimizations to reduce the total 

number of moves. Despite its wide adoption, the computational 

properties of CFOP remain underexplored, particularly in terms 

of its time efficiency and computational complexity across 

varying scenarios. A rigorous examination of these factors is 

essential for understanding their performance limits and 

identifying opportunities for optimization. 

This research investigates the time efficiency and 

computational complexity of the CFOP algorithm, with a 

particular focus on its scalability and practical implications. The 

complexity of the algorithm arises from several factors, 

including the combinatorial nature of the cube’s states, the 

branching factor in decision-making during the F2L phase, and 

the varying lengths and execution times of algorithms in the 

OLL and PLL phases. While CFOP is designed for efficiency in 

practice, theoretical analysis can shed light on its average-case 

and worst-case performance, as well as its dependence on 

human proficiency and algorithm memorization. 

In summary, this research seeks to bridge the gap between 

practical solving strategies and theoretical computational 

analysis by systematically examining the CFOP algorithm. 

Through this investigation, the Rubik's Cube transcends its role 

as a recreational puzzle, serving as a model for exploring the 

interplay between algorithmic design, human intuition, and 

computational efficiency. 

 

II.  THEORETICAL BASIS 

A. Time Complexity 
 Time complexity refers to a measure the amount of time an 

algorithm takes to execute. It is typically assessed by counting 

the number of basic operations an algorithm performs. 

Consequently, the time required by an algorithm is considered 
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proportional to the number of such operations, linked by a 

constant factor. 

 Since the execution time of an algorithm can vary for 

different inputs of the same size, the worst-case time complexity 

is often used. This represents the maximum time the algorithm 

might take for any input of a given size. Alternatively, the 

average-case time complexity, though less frequently analyzed, 

describes the average runtime over all possible inputs of a 

specific size. Both measures express time complexity as a 

function of the input size. 

 Exact computation of time complexity functions is often 

impractical, so the focus is usually on the algorithm’s behavior 

as the input size becomes large—its asymptotic behavior. Time 

complexity is commonly represented using big 𝑂 notation, such 

as 𝑂(𝑛), 𝑂(𝑛𝑙𝑜𝑔𝑛), 𝑂(𝑛2), or 𝑂(2𝑛), where 𝑛 represents the 

size of the input, often in bits. 

 

 
Figure 2.1. Time Complexity Chart 

(https://www.freecodecamp.org/news/big-o-cheat-sheet-time-

complexity-chart/) 

 

 Algorithms are categorized based on the function in the big 𝑂 

notation. For instance, an algorithm with 𝑂(𝑛) time complexity 

operates in linear time, while one with 𝑂(𝑛𝛼), where 𝛼 > 0 

operates in polynomial time. 

 

B. Rubik’s Cube 
 Rubik’s Cube invented in 1974 by Hungarian architect and 

professor named Ernő Rubik. It is created as a teaching tool to 

help students understand three-dimensional geometry, it quickly 

became a global phenomenon. The standard 3x3 Rubik’s Cube 

consists of 26 smaller cubies arranged around a fixed core, with 

each of its six faces capable of independent rotation. The 

objective is to return the cube to its solved state, where each face 

displays a uniform color, after scrambling its pieces through a 

series of twists. 

 Beyond its appeal as a toy, the Rubik’s Cube has deep roots 

in mathematics, particularly in group theory and combinatorics. 

The complexity of Rubik’s cube has inspired the development 

of various solving methods, such as CFOP (Cross, F2L, OLL, 

PLL), Roux, and Petrus. Moreover, the Rubik’s Cube has 

become a symbol of problem-solving and intellectual curiosity, 

influencing fields as diverse as artificial intelligence, 

optimization, and education. 

 As a cultural and mathematical artifact, the Rubik’s Cube 

continues to inspire innovation. Speedcubing competitions have 

emerged, where participants compete to solve the cube in the 

shortest time, pushing human reflexes and algorithmic 

understanding to new limits. Meanwhile, researchers explore its 

theoretical implications, such as “God’s Number” the 

maximum number of moves required to solve any scrambled 

cube. 

 To understand the mechanics of the Rubik's Cube, it is 

essential to familiarize oneself with the notation used to describe 

its moves. Each move corresponds to a rotation of one of the 

cube’s six faces, and this notation provides a standardized 

language for solvers and algorithms alike. By breaking down 

these movements, one can analyze how the cube's pieces are 

repositioned and manipulated during the solving process. Below 

is an explanation of the standard moves, where each letter 

represents a specific face of the cube and the direction it is 

rotated. 

 

• R: Rotate right-face clockwise. 

• U: Rotate upper face clockwise. 

• F: Rotate the front face clockwise. 

• D: Rotate down face clockwise. 

• B: Rotate the back face clockwise. 

• L: Rotate left face clockwise. 

 

 Each of these moves can also be reversed into a 

counterclockwise move such as R′, U′, F′, D′, B′, L′, where the 

prime symbol (') indicates a counterclockwise rotation. 

 

 In addition to face rotations, whole-cube rotations are denoted 

by: 

• x: Rotate the entire cube as if performing R while 

keeping the center fixed. 

• y: Rotate the entire cube as if performing U. 

• z: Rotate the entire cube as if performing F. 

 

 Middle layer moves involve rotating the internal slices of 

the cube: 

• M: Rotate the middle slice parallel to the L-R axis. 

• E: Rotate the middle slice parallel to the U-D axis. 

• S: Rotate the middle slice parallel to the F-B axis. 

` 

C. CFOP Method 
 The CFOP method, also known as the Fridrich method, is 

one of the most used methods in speed solving a 3×3×3 Rubik’s 

Cube. It is one of the fastest methods with the other most notable 

ones being Roux and ZZ. This method was first developed in the 

early 1980s, combining innovations by a number of speed-

cubers. Jessica Fridrich, a Czech speed-cubers and the namesake 

of the method, is generally credited for popularizing it by 

publishing it online in 1997. Here are the 4 methods of CFOP: 

 

1. Cross 
 This first stage of solving involves solving the four edge 

pieces around one center piece, matching the colors of that 

center and each of the centers of the adjacent sides, forming the 

eponymous cross shape on the first layer. Most beginner 

methods solve the cross by first putting the white edge pieces 

around the yellow center on the top, then matching them with 

the same colored center, and finally moving them down to match 

them with the white center. Most CFOP tutorials instead 

recommend solving the cross on the bottom side to avoid cube 

rotations and to get an overall better view of the important pieces 

needed for the next step (F2L). 
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Figure 2.2. How Cross Solved in 3x3 Rubik’s Cube 

(https://en.wikipedia.org/wiki/Rubik%27s_Cube) 

 

 This cross is usually solved intuitively, although some 

techniques, such as replacement, and edge orientation, are used. 

The white cross is most used for demonstration and by beginner 

and intermediate speedsolvers, though more advanced 

speedcubers can use any of the six colors to form the cross, a 

practice known as color neutrality. The cross can always be 

solved in 8 moves or fewer. 

 

2. First Two Layer (F2L) 
 While the beginner methods continues by solving the four 

corners of the first layer and then matching the vertical edges to 

the corners to solve the second layer, the CFOP method solves 

each corner along with its vertical edge at the same time. There 

are 42 unique cases for the permutations of a corner and its 

matching edge on the cube (one of which corresponds to the 

solved pair), and the most efficient algorithm to solve any other 

case without "breaking" any already-solved pair is known and 

can be memorized. 

 

 
Figure 2.3. How F2L Solved in 3x3 Rubik’s Cube 

(https://en.wikipedia.org/wiki/Rubik%27s_Cube) 

 

3. Orient Last Layer (OLL) 
 This stage involves manipulating the top layer (yellow, if the 

cross is solved on white) so that all the pieces have the correct 

color on top, while largely ignoring the sides of these pieces. 

Doing this in one step is called “Full OLL”. There are 58 

possible combinations of piece orientations, so once again 

ignoring the solved case, this stage involves learning a total of 

57 algorithms. 

 

 
Figure 2.4. How PPL Solved in 3x3 Rubik’s Cube 

(https://en.wikipedia.org/wiki/Rubik%27s_Cube) 

 

4. PLL 
 The final stage involves moving the pieces of the top layer 

while preserving their orientation. There are a total of 21 

algorithms for this stage. They are distinguished by letter names, 

often based on what they look like with arrows representing 

what pieces are swapped around such as, A-perm, F-perm, T-

perm etc. Two-look PLL solves the corners first, followed by 

the edges, and requires learning just six algorithms of the full 

PLL set. The most common subset uses the A-perm and E-perm 

to solve corners (as these algorithms only permute the corners), 

then the U-perm (in clockwise and counter-clockwise variants), 

H-perm and Z-perm for edges. However, as corners are solved 

first in two-look, the relative position of edges is unimportant, 

and so algorithms that permute both corners and edges can be 

used to solve corners. The J, T, F, and R-perms are all valid 

substitutes for the A-perm, while the N, V and Y-perm can do 

the same job as the E-perm. Even fewer algorithms can be used 

to solve PLL. 

 

 
Figure 2.5. PLL Cases in 3x3 Rubik’s Cube 

(https://en.wikipedia.org/wiki/Rubik%27s_Cube) 

 

III.   ALGORITHM IMPLEMENTATION 

 In this research, various algorithms for solving and analyzing 

Rubik's Cube configurations were implemented using the 

“PyCubing” library, which provides efficient tools for working 

with Rubik's Cube puzzles. 

A. Cross Algorithm 
 The computational complexity of the cross algorithm is 

constrained by the finite number of states in a Rubik's Cube, its 

efficiency depends on the initial configuration. In the worst case, 

aligning each edge may require several rotations making the 

time complexity proportional to the number of misalignments. 

The current implementation uses efficient processes to minimize 

unnecessary moves. This function provides a solid foundation 
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for Rubik's Cube-solving research particularly in combinatorial 

optimization and process efficiency for adaptation to other 

solving frameworks. 

 

 
Figure 3.1. Cross Algorithm  

(Writer’s Archive) 

 
 “solve_white_cross” function is designed to solve the white 

cross on a 3x3 Rubik's Cube. This algorithm systematically 

aligns all white edges on the top face while ensuring these edges 

match their adjacent center colors. To achieve this, the function 

operates in two phases: first, gathering all white edges to the top 

face, and second, aligning and inserting them into their correct 

positions. In the initial phase, the algorithm iteratively checks 

the location of each white edge, employing predefined moves, 

such as F U' R, to reposition misaligned pieces. It handles 

complex scenarios, including edges on the sides or bottom face, 

using conditional logic and predefined face relationships. Once 

all edges are on the top face, this algorithm transits to the second 

phase, where it aligns the edges with their respective centers and 

inserts them into the solved state using efficient rotations. 

 

B. Front Two Layers (F2L) Algorithm 

 

 
Figure 3.2. First Layer Algorithm (F2L) 

(Writer’s Archive) 

 

 The provided functions such as  solve_first_layer_corners 

and solve_second_layer_edges address two critical steps in 

solving a 3x3 Rubik's Cube by completing the first layer's 

corners and solving the second layer's edges. Both functions 

employ modular subroutines for checking the state of specific 

pieces, ensuring correct placement and orientation.  

 The solve_first_layer_corners function focuses on permuting 

and orienting white corners by identifying their positions and 

applying move sequences like "sexy moves" to either reposition 

or insert them. The solve_second_layer_edges function uses 

systematic checks to locate unsolved edges and applies efficient 

insertion algorithms to align and place them correctly.  

 The complexity of these functions arises from iterating over 

possible piece states with a worst-case scenario of handling 

multiple misaligned corners or edges. Each piece requires 

conditional checks and potentially multiple moves to reach the 

desired position resulting in an overall time complexity 

proportional to the number of misaligned pieces. These 

functions provide a foundational approach to solving the cube 

and offer opportunities for research into process-based 

optimization. 

 

 
Figure 3.3. Second Layer Algorithm (F2L) 

(Pycubing) 

 

C. Orient Last Layer (OLL) Algorithm 
 The solve_oll_edges and solve_oll_corners functions address 

the Orientation of the Last Layer (OLL) step in solving a 3x3 

Rubik's Cube by orienting the edges and corners of the top layer 

to align with the yellow face. The solve_oll_edges function 

handles three main patterns such as dot, line, and L-shape using 

specific algorithms to orient edges. Similarly, solve_oll_corners 

iteratively adjusts corner orientation using "sexy moves" and 

bottom-layer rotations with a bounded number of iterations due 

to the finite corner configuration and also resulting in a time 

complexity of 𝑂(1).  
 Both functions are deterministic to ensure efficiency. While 

these implementations are optimized for manual solving, their 

performance could be further enhanced by integrating pattern 

recognition or advanced algorithms, making them suitable for 

exploring process efficiency and OLL algorithmic 

improvements in Rubik's Cube solving. 
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Figure 3.2. OLL Algorithm (solve_oll_corners) 

(Writer’s Archive) 

 

D. Permutation Last Layer (PLL) Algorithm 

 

 
Figure 3.2. PLL Algorithm (solve_pll_edges) 

(Writer’s Archive) 

 
 The solve_pll_corners and solve_pll_edges functions address 

the Permutation of the Last Layer (PLL) step. The 

solve_pll_corners function utilizes the T-permutation algorithm 

to resolve diagonal or adjacent swaps in 𝑂(1) moves due to the 

finite state space of corner permutations. Similarly, 

solve_pll_edges applies predefined edge-swap algorithms and 

checks for parity issues, iterating at most twice, with each 

iteration bounded by the limited edge configurations, leading to 

a time complexity of 𝑂(1).  
 Both functions rely on efficient matrix-based checks and 

heuristic-driven swaps, ensuring deterministic and optimized 

performance for manual solving scenarios. However, the current 

design does not dynamically handle parity corrections, 

potentially requiring external intervention for some 

configurations, and could benefit from integrating more 

advanced algorithms or precomputed lookup tables for further 

optimization. 

 

E. Edge Cases Handling 
 In 𝑁𝑥𝑁 Rubik’s Cubes, solving edge cases significantly 

impacts computational complexity, particularly during steps that 

involve pairing and positioning edge pieces. Unlike the standard 

3𝑥3 cube, an 𝑁𝑥𝑁 cube's edge consists of multiple smaller edge 

pieces (specifically 𝑛 − 2 pieces per edge). The requirement to 

correctly pair these smaller pieces introduces additional 

complexity as the cube's size increases. 

 The complexity arises from the iterative pairing process. For 

an 𝑁𝑥𝑁 cube, there are 12(𝑛 − 2) edge pieces, and solving 

these involves scanning, identifying, and aligning misplaced 

pieces. Each edge pairing step may involve multiple rotations, 

or slice moves to position edge fragments adjacent to their 

corresponding pieces. Since edge-solving generally requires 

evaluating the positions of all edge pieces, the algorithm 

operates over a search space proportional to 𝑛2, resulting in a 

complexity of 𝑂(𝑛2). This quadratic relationship is further 

compounded by potential edge parity issues unique to even-

dimension cubes like 4x4 and 6x6, requiring additional 

algorithms to resolve misalignments. 

 Furthermore, as 𝑛 increases, the higher number of 

intermediate states and possible configurations for edge piece 

placement exacerbates the computational effort. This 

complexity highlights the need for efficient pairing strategies to 

mitigate the performance impact in larger 𝑁𝑥𝑁 cubes. 

 

IV.   ANALYSIS 

 The time efficiency and computational complexity of the 

Rubik’s Cube solver code depend on several factors, primarily 

the cube's size (𝑁𝑥𝑁) and the specific algorithms used for each 

solving phase. In the case of a general 𝑁𝑥𝑁 solver (whether for 

3x3, 4x4, or larger cubes), each algorithm must account for the 

increased number of pieces and potential misalignments as the 

cube size grows. For example, the "first layer corners" solving 

step involves multiple rotations to align corner pieces and 

position them correctly. As the cube's size increases, these 

rotations multiply, leading to a quadratic complexity of 𝑶(𝒏𝟐). 

The "second layer edges" algorithm faces a similar challenge, 

where the complexity arises from the need to evaluate edge 

placements and swap or rotate edge pieces until they are 

correctly aligned. 

 For algorithms like "OLL (Orientation of the Last Layer)" 

and "PLL (Permutation of the Last Layer)", the time complexity 

is highly dependent on the number of pieces to be oriented or 

permuted. For larger cubes, more moves are required to 

reposition each edge or corner, and algorithms that were 

originally linear for the 3𝑥3 may become more intricate as the 

cube size increases. Given that the edge pieces in an 𝑁𝑥𝑁 cube 

are represented by multiple smaller elements which must be 

correctly aligned or swapped, the overall complexity of solving 

the entire cube can grow nonlinearly with certain steps requiring 

handling edge parity and additional algorithms for fixing 

impossible configurations. 
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Figure 4.1. Example of Rubiks 3x3 Solved Moves 

(Writer’s Archive) 

 

The solving counts for the 2𝑥2 and 3𝑥3 Rubik’s cubes can be 

considered 𝑂(1) complexity, as these cubes require a fixed 

number of steps that do not scale with their size. The 2𝑥2 cube, 

being a simplified version without edges, inherently has fewer 

permutations and can be solved in a consistent number of moves 

(95-100 Moves on average). Similarly, the 3𝑥3 cube can be 

efficiently solved using standard algorithms like CFOP within a 

finite move count (135-150 Moves on average). In contrast, 

higher-order cubes like the 4𝑥4 and 5𝑥5 introduce additional 

challenges, such as parity errors and edge pairing which makes 

their solving process scale more dramatically, different from the 

constant-time 𝑂(1) complexity seen in the 2x2 and 3x3 cubes. 

Here is the data of the cube solved in a random scrambled: 

 

 
Figure 4.2. Data Counting Solving Moves on Rubik’s Cube 

𝑁𝑥𝑁 

(Writer’s Archive) 

 

As the size of the Rubik's Cube increases from 6𝑥6 to 10𝑥10, 

the number of moves required to solve it grows significantly, 

following an increasing complexity pattern. This increase in 

moves reflects the added complexity of solving cubes with more 

pieces, additional edge and center alignment challenges, and the 

need to handle more complex parity errors. The growth in move 

count illustrates the O(n²) time complexity, where n represents 

the number of pieces on one side. This scaling shows how the 

larger state space of each cube size leads to more computational 

effort, as each new layer adds more pieces to manage, making 

larger cubes progressively more difficult to solve. Here is the 

given count solved moved in 6𝑥6 to 10𝑥10: 

• 𝟔𝒙𝟔 Rubik’s cube solved within 1525 moves 

• 𝟕𝒙𝟕  Rubik’s cube solved within 1998 moves 

• 𝟖𝒙𝟖 Rubik’s cube solved within 2847 moves 

• 𝟗𝒙𝟗 Rubik’s cube solved within 3376 moves 

• 𝟏𝟎𝒙𝟏𝟎 Rubik’s cube solved within 4138 moves 

 

The time complexity of solving Rubik's Cube puzzles 

increases with the size of the cube, particularly from the 2𝑥2 to 

5𝑥5 cubes, and scales almost quadratically with larger cubes 

like the 6𝑥6, 7𝑥7, and beyond. For smaller cubes, such as the 

2𝑥2 or 3𝑥3, the solving process typically involves fewer moves, 

and the complexity grows linearly as more pieces are added. 

However, when moving to larger cubes, the problem becomes 

significantly more complex. For instance, a 6𝑥6 cube requires 

around 1525 moves to solve, a 7𝑥7 requires 1998 moves, and 

an 8𝑥8 requires 2847 moves. This growth is due to the 

increased number of pieces that need to be permuted and 

aligned, along with the introduction of additional complexities 

like center piece solving and edge pairing, which are not present 

in smaller cubes. 

In larger cubes such as 9𝑥9 and 10𝑥10, the move count 

continues to increase, reaching 3376 and 4138 moves, 

respectively. This escalating number of moves results from 

several factors, such as the greater number of individual pieces 

(edges and corners) that must be correctly positioned and 

aligned. Additionally, larger cubes often introduce special parity 

issues that require unique algorithms to resolve, further 

increasing the number of necessary moves. For example, while 

a 3𝑥3 cube can typically be solved in fewer moves, solving a 

5𝑥5 cube involves extra steps like solving the centers and 

pairing the edges, both of which increase complexity. 

The relationship between cube size and solving moves 

demonstrates an approximately quadratic growth pattern, 

aligning with the time complexity of 𝑂(𝑛2) where 𝑛 is the 

dimension of the cube. The number of moves required grows in 

proportion to the square of the cube size, reflecting the increase 

in layers, pieces, and special cases that emerge as the cube 

dimensions grow. This trend suggests that the time complexity 

for larger cubes increases substantially as the solver must 

account for the additional layers, pieces, and complexities such 

as parity errors. While 𝑂(𝑛2) is a suitable classification for 

complexity to reach the solved state. 

 

V.   CONCLUSION 

 In conclusion, the time efficiency and computational 

complexity of solving Rubik's Cubes can be analyzed with 

respect to the increasing size of the cube. For smaller cubes, such 

as the 2𝑥2 and 3𝑥3, the complexity is manageable, and human 

solvers can efficiently use methods like CFOP (Fridrich 

Method) with a time complexity that is generally considered 

𝑂(𝑛^2). Ay the size of the cube increases, the number of pieces 

and configurations increases exponentially which increases the 

complexity and the number of moves required to solve the cube. 

For cubes larger than 5𝑥5, the 𝑶(𝒏𝟐) complexity becomes more 

evident as the solver needs to handle additional pieces, manage 

edge pairing and address potential parity errors, which 

significantly increases the move count. 

The 𝑶(𝒏𝟐) complexity is primarily influenced by the need to 

solve multiple layers and align edges for each face of the cube, 

and this complexity grows as the cube’s size increases. For 

instance, solving a 6𝑥6 cube can require upwards of 1500 

moves, with the move count increasing further for larger cubes. 

While CFOP remains an efficient method for human solvers, it 

becomes less practical for larger cubes where more advanced 
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strategies are necessary. In the case of cubes larger than 5𝑥5, the 

solver's time efficiency is heavily influenced by how well they 

can adapt to the increasing complexity, and the 𝑶(𝒏𝟐) growth 

in required moves becomes increasingly noticeable as the cube 

size grows. While CFOP is optimal for 2𝑥2 and 3𝑥3 cubes, it 

requires modifications and greater expertise for larger cubes, 

where time efficiency becomes more dependent on solving 

techniques suited to handling the increased number of 

configurations. 
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